PDL1-targeted CD28 costimulatory bispecific antibodies enhance T cell activation in solid tumors

AACR 2021 Abstract #1880

Gregory L. Moore¹, Veronica G. Zeng¹, Juan Diaz¹, Christine Bonzon¹, Kendra N. Avery¹, Ruschelle Love¹, Matthew Dragovich¹, Rumana Rashid¹, Irene W.L. Leung¹, Michael Hackett¹, Jing Qi¹, Charles G. Bakhit¹, Fereshteh Nazari², Debbie Flusberg², David Flowers², Alison Betts², Umesh S. Muchhal¹, Norman J. Barlow¹, John R. Desjarlais¹, and Michael Hedvat^{1*} ¹Xencor, Inc., ²Applied Biomath, LLC.

Introduction

- T cells in the tumor microenvironment require TCR/MHC engagement and costimulatory receptor engagement to achieve complete activation.
- CD28 is a classical costimulatory receptor expressed on T cells, including stem cell-like memory T cells (T_{scm}), a population that has recently been shown to be important for patient response to checkpoint blockade.
- Tumor cells lack expression of CD28 ligands, so we hypothesized that activation of CD28 signaling at the T cell/tumor cell interface could enhance anti-tumor activity.
- We designed PDL1 x CD28 bispecific antibodies that provide CD28 costimulation in the presence of PDL1 and TCR engagement.
- As PD(L)1 signaling has been shown to directly inhibit CD28 costimulation, this novel bispecific modality has potential to promote CD28 costimulation while simultaneously preventing the suppression of the same signal.

Concept: PDL1 x CD28 bispecific antibody provides CD28 costimulation with built-in PD(L)1 blockade

Potentially superior to PD(L)1 blockade
Combines with CD3 engagers

Combines with approved αPD1

PDL1 x CD28

1. XmAb® heterodimeric Fc platform allows for well-behaved bispecific antibodies

Fc substitutions promote heterodimer formation and facilitate purification by standard methods such as Protein A + ion-exchange chromatograph

PDL1 x CD28 XmAb Bispecific

- Highly stable αCD28 scFv (T_m ~ 78 °C)
- XtendTM substitutions to enhance half-life
- FcγR interactions eliminated

PDL1 x CD28 enhances the activity of TAA x CD3 bispecifics in the presence of PDL1

2. PDL1 x CD28 enhances the activity of TAA x CD3 bispecifics

3. PDL1 x CD28 enhances native TCR/MHC-I interaction and promotes strong anti-tumor activity in a solid tumor model

4. PDL1 x CD28 mechanism-based PK/PD modeling and cynomolgus monkey PK suggest a patient dosing schedule consistent with typical checkpoint inhibitor regimens

Mechanism-based PK/PD patient model predicts intratumoral T cell costimulatory activity and consistent PDL1 blockade

Central / Peripheral / Tumor

Summary

- PDL1 x CD28 XmAb® bispecific antibodies were engineered to costimulate CD28 while also blocking PDL1 and were evaluated in vitro and in vivo.
- PDL1 x CD28 enhanced the activity of TAA x CD3 bispecifics and native TCR/MHC-I interaction, and promoted an anti-tumor response in a mouse solid tumor model.
- PDL1 x CD28 was well tolerated in cynomolgus monkeys and its compelling preclinical activity warrants further investigation.

* Contact: mhedvat@xencor.com

© 2021 Xencor, Inc., Monrovia, CA 91016 USA