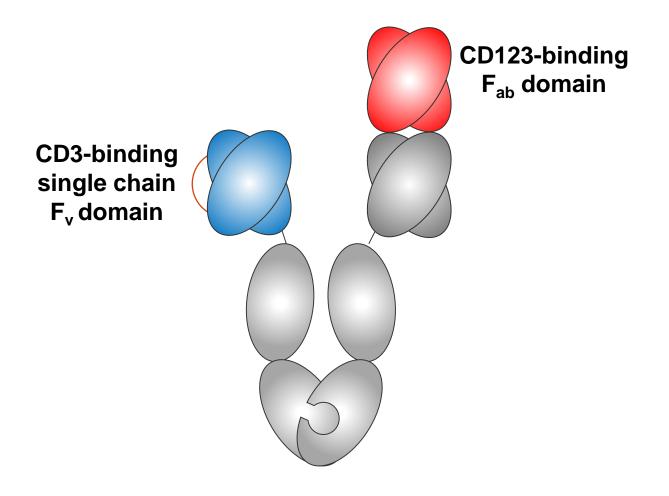
Complete Responses in Relapsed/ Refractory Acute Myeloid Leukemia (AML) Patients on a Weekly Dosing Schedule of XmAb<sup>®</sup>14045, a CD123 x CD3 T Cell-Engaging Bispecific Antibody: Initial Results of a Phase 1 Study

Farhad Ravandi<sup>1</sup>, Asad Bashey<sup>2</sup>, James M. Foran<sup>3</sup>, Wendy Stock<sup>4</sup>, Raya Mawad<sup>5</sup>, William Blum<sup>6</sup>, M. Wayne Saville<sup>7</sup>, Chelsea M. Johnson<sup>7</sup>, K. Gary J. Vanasse<sup>8</sup>, Thomas Ly<sup>7</sup>, Hagop M. Kantarjian<sup>1</sup>, Bhavana Bhatnagar<sup>9</sup>, Koichi Takahashi<sup>1</sup>, and Alice S. Mims<sup>9</sup>

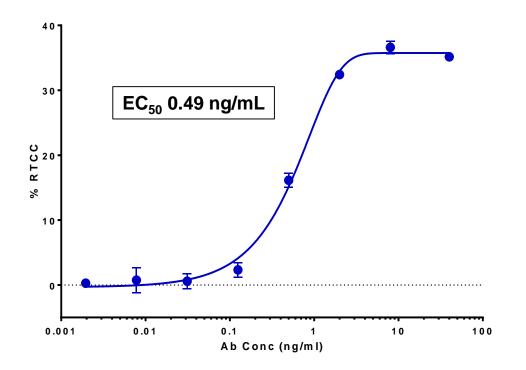
<sup>1</sup>U of TX-MD Anderson CC, Houston, TX; <sup>2</sup>Acute Leukemia and BMT Program at Northside Hospital, Atlanta, GA; <sup>3</sup>Mayo Clinic Florida, Jacksonville, FL; <sup>4</sup>University of Chicago, Chicago, IL; <sup>5</sup>Swedish Cancer Institute, Seattle, WA; <sup>6</sup>Winship Cancer Institute, Emory University, Atlanta, GA; <sup>7</sup>Xencor, Inc., Monrovia and San Diego, CA; <sup>8</sup>Novartis Institutes for Biomedical Research, Cambridge, MA; and <sup>9</sup>Ohio State University, Columbus, OH.

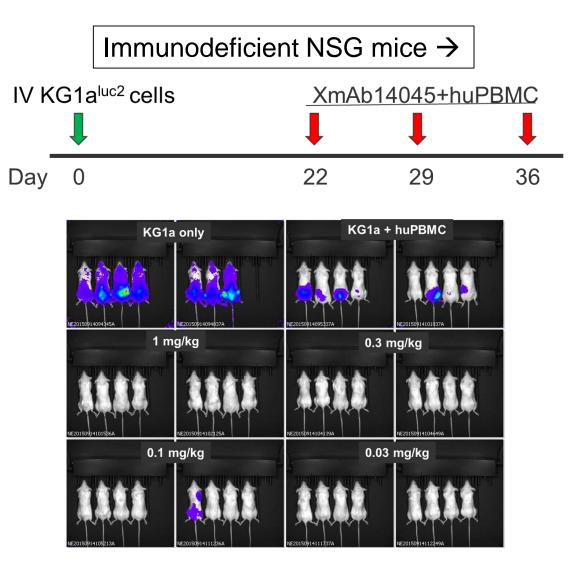

### Background

CD123 (IL-3 receptor α subunit) found on early hematopoietic precursor cells and basophils Frequently expressed on hematologic malignancies, including:

- Acute myelogenous leukemia 96-98% of cases
- Myelodysplastic syndrome >50%
- B-cell acute lymphoblastic leukemia 82-100%
- Blastic plasmacytoid dendritic cell neoplasm 83-100%
- Chronic myelogenous leukemia 75-100%
- Hairy cell leukemia 95-100%

Potential target for novel therapeutic strategies


## XmAb®14045 (SQZ622): CD123 x CD3 Bispecific Antibody




- Full-length immunoglobulin molecule designed to be dosed intermittently, in contrast to smaller constructs that are referred to as "DART" or "BiTE" bispecific antibodies that require a continuous infusion
- Stimulates targeted T cell-mediated killing of CD123-expressing cells, regardless of T cell antigen specificity
- Ablation of  $F_c\gamma$  receptor binding removes potential for receptor-mediated crosslinking and activation of T cells

### XmAb14045: CD123 x CD3: Potent in Vitro Killing

Redirected human T-cell cytotoxicity of human PBMC (effector cells) against KG-1a AML cells at increasing XmAb14045 concentrations





## XmAb14045 Phase 1 Design: Objectives and Eligibility

#### **Objectives**

#### Primary

- First infusion MTD and safety
- Second and subsequent infusion MTD and safety

#### Secondary

- Pharmacokinetics, pharmacodynamics, immunogenicity
- Preliminary anti-tumor activity

#### Exploratory

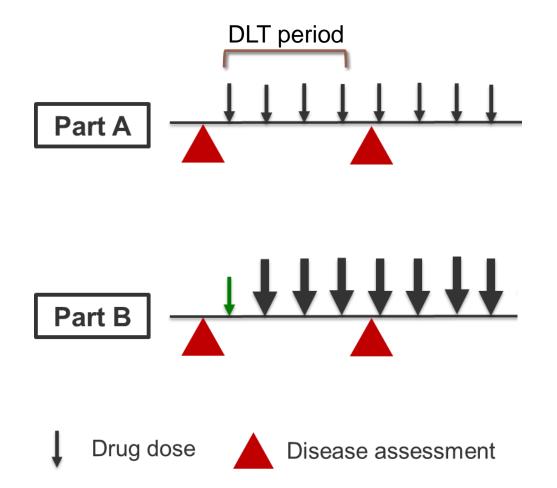
- Lymphocyte subsets and T-cell activation
- Cytokine/immunologic profiles (IL-2, IL-6, IL-10, gamma-IFN, CRP, etc.)
- Effect on immune checkpoint expression
- Effect on stem cell numbers

#### Inclusion criteria

#### Eligible diseases

- AML (excluding PML)
- B-cell ALL
- Blastic plasmacytoid dendritic neoplasm
- Blast crisis CML
- ECOG PS 0-2
- Relapsed or refractory
- Prior allogeneic transplant allowed

#### **Exclusion criteria**


Antineoplastic treatment within 2 weeks

Known uncontrolled CNS involvement by tumor

AST/ALT > 3.0x ULN, Bili > 1.5, Cr > 2.0x ULN or Clcr > 40; WBC  $\ge$  10K or leukostasis

History of therapy with CD123-directed therapies

## XmAb14045 Phase 1 Design



- Weekly doses infused over 2 hours
- Cycle length was 28 days
- 15 planned dose cohorts for Part A starting at 0.003 µg/kg
- Disease assessments occurred at the end of odd-numbered cycles
- DLT period Days 1-22
- Subject could receive additional cycles of therapy if the investigator felt there was clinical benefit
- Intrapatient dose escalation was allowed

### XmAb14045 Phase 1 Design

- 66 subjects dosed as of 19 Oct 2018
- Efficacy analysis included:
  - all subjects that received 4 weekly doses of XmAb14045 at ≥1.3 µg/kg (dose level at which activity was initially seen)
  - had at least one post-treatment disease assessment
- Safety analysis included all subjects that received at least 1 dose of XmAb14045

|         | Cycle 1 |       |        |        |          |       | Efficacy  |
|---------|---------|-------|--------|--------|----------|-------|-----------|
| Cohorts | Day 1   | Day 8 | Day 15 | Day 22 | Cycle 2+ | Dosed | Evaluable |
| 9A      | 1.3     | 1.3   | 1.3    | 1.3    | 1.3      | 8     | 5         |
| 10A     | 2.3     | 2.3   | 2.3    | 2.3    | 2.3      | 5     | 4         |
| 1B      | 1.3     | 2.3   | 2.3    | 2.3    | 2.3      | 6     | 5         |
| 2B      | 1.3     | 2.3   | 2.3    | 4      | 4        | 6     | 4         |

All doses in µg/kg

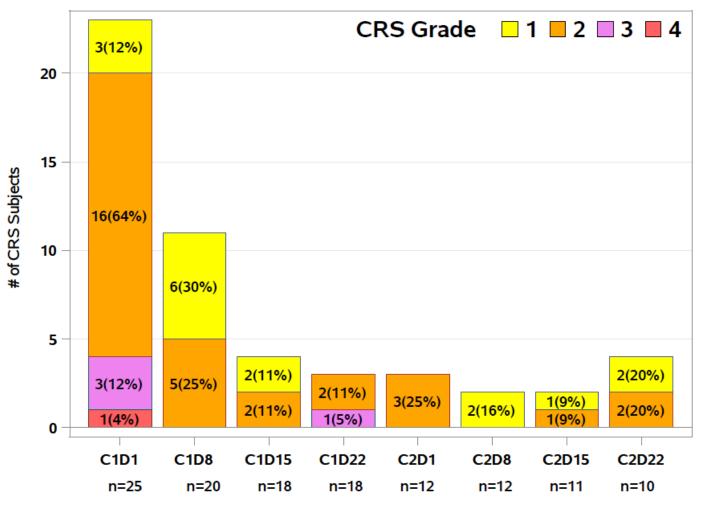
### **Demographics (Safety Population)**

| Characteristic                                    |                                          | All patients (n=66) |  |
|---------------------------------------------------|------------------------------------------|---------------------|--|
| Age                                               | Median [min, max]                        | 61 years [18, 85]   |  |
| Gender                                            | Female                                   | 30 (46%)            |  |
| Diagnosis                                         | AML*                                     | 66 (100%)           |  |
| Time since initial diagnosis                      | Median [min, max]                        | 49 weeks [3, 879]   |  |
| Number of prior therapies                         | Median [min, max]                        | 3 [1, 8]            |  |
| History of hematopoetic stem cell transplantation |                                          | 20 (30%)            |  |
| Refractory to last therapy (per investigator)     | last therapy (per investigator) 57 (86%) |                     |  |
|                                                   | Favorable                                | 3 (5%)              |  |
| ELN rick optogony                                 | Intermediate                             | 22 (33%)            |  |
| ELN risk category                                 | Adverse                                  | 35 (53%)            |  |
|                                                   | Unknown                                  | 6 (9%)              |  |
| Secondary leukemia                                |                                          | 7 (11%)             |  |

\*one B-ALL patient was enrolled/treated, but not included in this analysis.

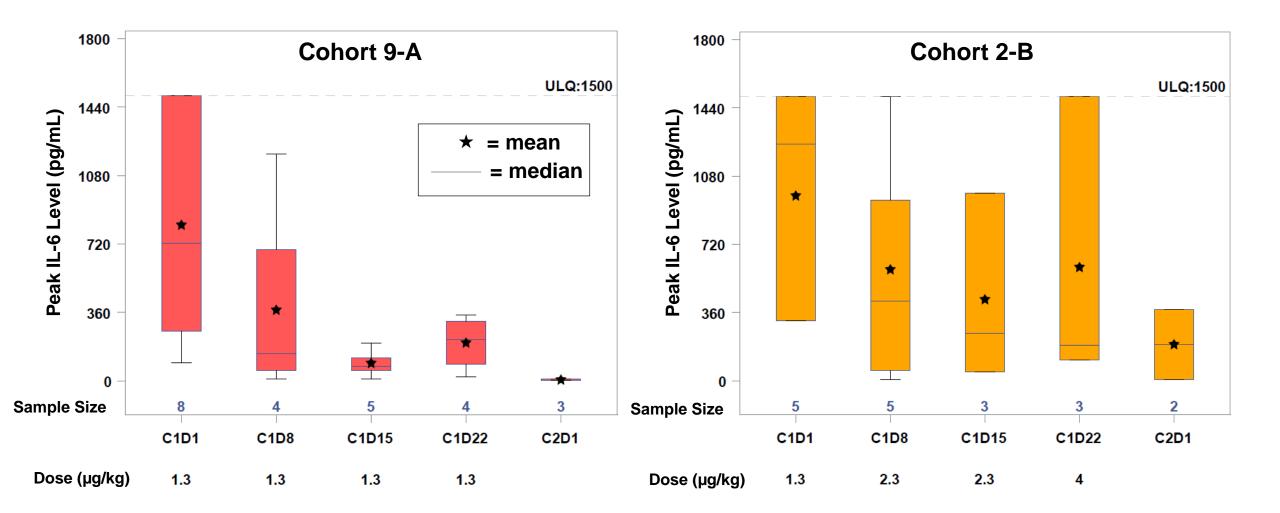
### Safety

#### Related Treatment Emergent Adverse Events Occurring in ≥10% of Subjects (n=66)


| Event                      | All      | ≥ Grade 3 |
|----------------------------|----------|-----------|
| Cytokine release syndrome* | 36 (55%) | 4 (6%)    |
| Chills                     | 26 (39%) |           |
| Fever                      | 18 (27%) |           |
| Tachycardia                | 14 (21%) |           |
| Increased ALT              | 12 (18%) | 5 (8%)    |
| Anemia                     | 11 (17%) | 9 (14%)   |
| Hypotension                | 11 (17%) | 1 (2%)    |
| Fatigue                    | 10 (15%) | 1 (2%)    |
| Hypertension               | 9 (14%)  | 3 (5%)    |
| Increased AST              | 8 (12%)  | 2 (3%)    |
| Lymphopenia                | 7 (11%)  | 5 (8%)    |
| Nausea                     | 7 (11%)  |           |
| Vomiting                   | 7 (11%)  |           |

\*CRS Revised Grading System (Lee DW et al. Blood 2014;124:188)

- Primary toxicity was cytokine release syndrome (CRS), observed in 55% of subjects. Additional events occurring within 24 hours of dosing consistent with CRS were seen in 29% (chills, fever, tachycardia, hypotension, etc.)
- No clear evidence of drug-related myelosuppression
- Grade 3 transaminase elevation occurring within 24 hours of drug infusion was seen in 5 patients
  - All resolved within 7 days
  - Only 1 patient developed hyperbilirubinemia (Gr 1)
  - No clear relationship with dose
  - Most often seen with the first dose of XmAb14045
- Recurrent infusion-related back or head pain in 4 patients, managed with analgesics
- Neurologic events: 5 patients developed transient infusion-related cognitive changes and 1 patient manifested paresthesias

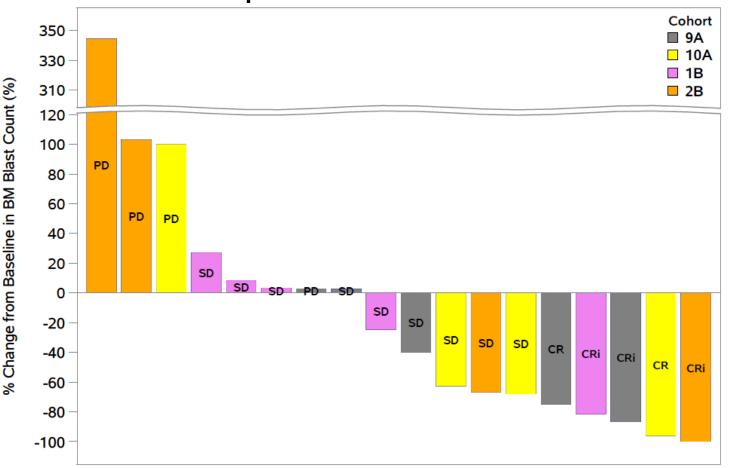

## **Cytokine Release Syndrome and Premedications**

- No premedication was given for early cohorts
- Standard premedications were added for Cohort 4A (0.075 µg/kg):
  - Dexamethasone 10-20 mg IV
  - Diphenhydramine 50 mg po
  - Acetaminophen 500 mg po
- All episodes of CRS began within 1-4 hours of the start of drug infusion and usually resolved within 1-4 hours
- CRS was generally more severe on the initial dose, accounting for most ≥ Grade 3 episodes

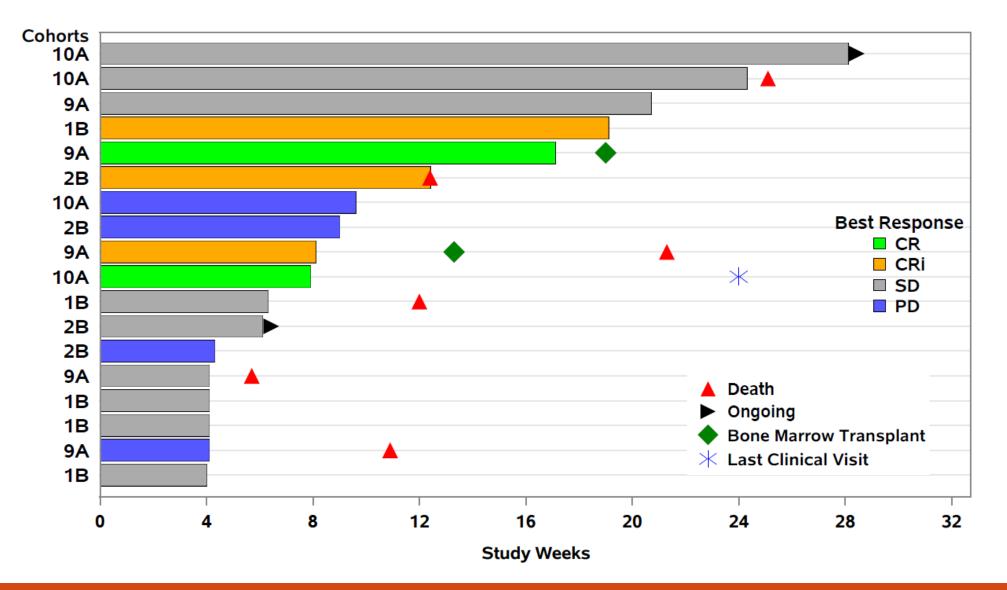


#### CRS severity by infusion (Cohorts 9A-2B)

### **Cytokine Release Syndrome: Peak Serum IL-6 by Infusion**



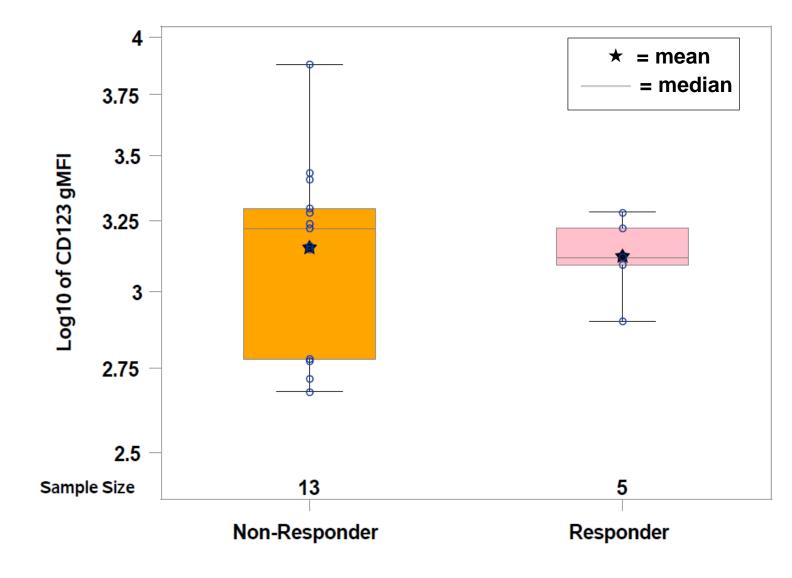

Upper limit of quantification for IL-6 = 1500 pg/mL


## **Preliminary Efficacy Data**

- Objective response rate (CR + CRi) in 5/18 patients (28%) dosed at ≥1.3 µg/kg
- Stable Disease lasting for >3 months in an additional 3 patients (17%)
- Reduction of marrow blasts in 56% of patients
- Blast reduction occurred within the first cycle, although clinical hematologic recovery (CRi→CR) sometimes required 1-2 additional cycles

# Percentage change in bone marrow blasts from pretreatment baseline




### **Time to Treatment Discontinuation**



### **Responders (CR and CRi)**



### Blast CD123 Expression: Responders vs. Non-Responders



CD123 mean fluorescent intensity of marrow leukemic blasts by flow cytometry prior to XmAb14045 administration was not significantly different between responders and non-responders

### Conclusions

- XmAb14045 at the dose and schedule studied is well tolerated and has clinical activity in relapsed AML
- Antibody construct with full-length Fc region permits weekly dosing
- Cytokine release syndrome is the primary toxicity of XmAb14045; management with premedication and the use of a priming dose and step-up dosing is effective in limiting its severity
- No clear evidence of myelosuppression was observed even after prolonged administration
- Clinically significant responses were achieved in relapsed/refractory AML allowing allogeneic stem cell transplant
- Dose escalation and schedule optimization continues

#### **Acknowledgments**

#### Participating patients and their families

**MD Anderson, Houston** Farhad Ravandi MD Hagop M. Kantarjian MD Koichi Takahashi MD

**Ohio State University, Columbus** Alice S. Mims MD Bhavana Bhatnagar DO

Acute Leukemia and BMT Program at Northside Hospital, Atlanta Asad Bashey MD PhD

Mayo Clinic Florida, Jacksonville James M. Foran MD

University of Chicago Wendy Stock MD Swedish Cancer Institute, Seattle Raya Mawad MD

**Emory University, Atlanta** William Blum MD

Novartis, Cambridge, MA K. Gary J. Vanasse MD

Xencor, Inc., San Diego and Monrovia, CA Wayne Saville MD Chelsea M. Johnson BSN Maria Winter Andrea Dawson Thomas Ly PhD Salil Parab MS MBA Smitha Mullapudi MS Caiyan Li PhD Paul Foster MD